- We did this lab to see if a larger sample size effected the most common M&M color.
- My hypothesis was \_\_\_\_\_ (restate your hypothesis)
- My hypothesis was
   \_\_\_\_(supported or rejected)

because\_\_\_\_\_

- When sampling 160 Fun Size M&M bags, the most common color was with \_\_\_\_ with \_\_\_\_ M&Ms.
- The least common color was \_\_\_\_\_
   with \_\_\_\_\_ M&Ms.
- had \_\_\_\_\_ more M&Ms than
  .

- In my individual bag, \_\_\_\_\_ was the most common M&M color with \_\_\_\_ M&Ms.
- The least common color was

|     | with | M&Ms.     |
|-----|------|-----------|
|     | had  | more M&Ms |
| . 1 |      |           |

than \_\_\_\_\_.





- In science class, we learned that a larger sample size increases reliability and accuracy of results.
- Therefore, the more bags we sampled the more accurate our data became.

- One source of error that could have effected our data \_\_\_\_\_\_.
- Another source of error was

\_\_\_\_\_\_



 Another experiment we can try is sampling larger bags of M&Ms or we can sample another type of M&M.

